

DBB-003-001502

Seat No.

B. Sc. (Sem. - V) (CBCS) Examination

April / **May** - **2015**

Physics

Paper: 502 - Electricity, Magnetism & Solid State Electronics

Faculty Code: 003

Subject Code: 001502

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions: (1) Figures on right indicate marks.

- (2) Write answer of all questions in main answer sheet.
- (3) Symbols have their usual meaning.
- Answer following questions indicating proper choice,followed by answer.
 - (1) An ideal regulated power supply has ______ %voltage regulation?
 - (a) 0

(b) 1

(c) 5

- (d) 10
- (2) How many diodes are used in bridge rectifier?
 - (a) 1

(b) 2

(c) 3

(d) none of these

(3)	Differential form of Gauss law involves sign					
	(a)	plus	(b)	minus		
	(c)	dot	(d)	cross		
(4)	The	electric field is the	:	of a scalar potential.		
	(a)	curl	(b)	gradient		
	(c)	divergence	(d)	none of these		
(5)	(5) Minus sign in Faraday's law indicates					
	(a)	Coulomb	(b)	Ampere		
	(c)	Lenz	(d)	Ohm		
(6)	Poynting theorem is also known as theorem.					
	(a)	work-distance				
	(b)	work-force				
	(c)	work-energy				
	(d)	work-charge				
(7)	Valu	ue of e/m is				
	(a)	1.76×10^{11} C/kg	(b)	$1.76 \times 10^{10} \text{ C/kg}$		
	(c)	1.76×10^9 C/kg	(d)	1.76×10^8 C/kg		
(8)	Pow	er means				
	(a)	I^2/R	(b)	$ m R^2/I$		
	(c)	I^2R	(d)	$ m R^2 I$		
DBB-003-001502]			2	[Contd		

(9)	RC c	oupling is used for		amplification.		
	(a)	power	(b)	current		
	(c)	voltage	(d)	none of these		
(10)	Clas	sspower am	plifie	r has highest collector efficiency.		
	(a)	C	(b)	В		
	(c)	A	(d)	AB		
(11)	(11) Charge of electron in coulomb is					
	(a)	1.6×10 ⁻¹⁹				
	(b)	1.6×10^{-20}				
	(c)	1.6×10^{-21}				
	(d)	none of these				
(12)	The current is the charge per unit passing a given point.					
	(a)	voltage	(b)	power		
	(c)	time	(d)	resistance		
(13)	(13) Steady current means					
	(a)	eiectrostatics	(b)	magnetostatics		
	(c)	electrodynamics	(d)	None of these		
(14)	(14) is the unit of magnetic flux.					
	(a)	watt	(b)	weber		
	(c)	tesla	(d)	None of these		
DBB-003	-001	502]	3	[Contd		

(15)		is the primary	sou	rce of energy.				
	(a)	water	(b)	sun				
	(c)	nucleus	(d)	fuel				
(16)	Trai	ansformer coupling is used for amplificat						
	(a)	current	(b)	voltage				
	(c)	power	(d)	none of these				
(17)	The	most costly couplin	g is	coupling.				
	(a)	R.C.	(b)	direct				
	(c)	impedence	(d)	transformer				
(18)	CRO	O involves						
	(a)	filament	(b)	cathode				
	(c)	anode	(d)	all				
(19)	Catl	node ray means the	ray	of				
	(a)	electron	(b)	proton				
	(c)	neutron	(d)	all				
(20)		is known as po	oissoı	n's equation.				
	(a)	$\nabla^2 V = -\frac{\rho}{\epsilon_0}$	(b)	$\nabla^2 V = \frac{\rho}{\epsilon_0}$				

(c) $\nabla^2 V = -\frac{\epsilon_0}{\rho}$ (d) none of these

2	(A)	Answer any three				
		(1)	Define electric flux.			
		(2)	Write Ampere's law in both differential and integral			
			form.			
		(3)	State the Poynting theorem and mention the			
			pointing vector.			
		(4)	Mention the sources of energy.			
		(5)	Mention the types of Power stations.			
		(6)	Explain Multistage Transistor Amplifier.			
(B)	(B)	Ans	swer any three	9		
		(1)	Derive Gauss's law in differential form, from its			
			integral form.			
		(2)	Explain magnetic field of a steady current.			
		(3)	Explain Farady's law.			
		(4)	Explain with block diagram, how a source of energy			
			is converted into electrical energy.			
		(5)	Draw a circuit diagram of transformer coupled			
			amplifier and a characteristic plot for the same.			
		(6)	Explain heat sink.			
	(C)	Ans	swer any two	10		

charge.

(2) Compare electrostatics and magnetostatics.

(1) Derive an equation of work done in moving a

- (3) Explain nuclear power station in brief.
- (4) Discuss R-C coupled amplifier with figure.
- (5) Explain puss-pull amplifier.

3 (A) Answer any three

6

- (1) Only mention the classification of power amplifier.
- (2) Mention the function of Transistor Audio Power amplifier.
- (3) Draw the circuit diagram of complimentary symmetry amplifier.
- (4) Draw the circuit diagram of ordinary power supply.
- (5) Define regulated power supply.
- (6) Write the equation to find out the frequency with the help of LISSAJOUS figures on CRO.

(B) Answer any three

9

- (1) Compare voltage and power amplifier in a tabular form.
- (2) Explain voltage regulation.
- (3) Explain minimum load resistance in the case of power supply.
- (4) Explain the difference between analog and digital instruments.
- (5) Mention six applications of CRO.
- (6) Write short note on digital voltmeter.

(C) Answer any two

10

- (1) Write note on thermal runaway.
- (2) Explain short circuit protection.
- (3) Explain Transistor series voltage regulator with circuit diagram .
- (4) Write short note on CRO.
- (5) Prove that maximum collector efficiency of transformer coupling class-A power amplifier is 50%.